-6x^2+40x+25=0

Simple and best practice solution for -6x^2+40x+25=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -6x^2+40x+25=0 equation:


Simplifying
-6x2 + 40x + 25 = 0

Reorder the terms:
25 + 40x + -6x2 = 0

Solving
25 + 40x + -6x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
-6 the coefficient of the squared term: 

Divide each side by '-6'.
-4.166666667 + -6.666666667x + x2 = 0

Move the constant term to the right:

Add '4.166666667' to each side of the equation.
-4.166666667 + -6.666666667x + 4.166666667 + x2 = 0 + 4.166666667

Reorder the terms:
-4.166666667 + 4.166666667 + -6.666666667x + x2 = 0 + 4.166666667

Combine like terms: -4.166666667 + 4.166666667 = 0.000000000
0.000000000 + -6.666666667x + x2 = 0 + 4.166666667
-6.666666667x + x2 = 0 + 4.166666667

Combine like terms: 0 + 4.166666667 = 4.166666667
-6.666666667x + x2 = 4.166666667

The x term is -6.666666667x.  Take half its coefficient (-3.333333334).
Square it (11.11111112) and add it to both sides.

Add '11.11111112' to each side of the equation.
-6.666666667x + 11.11111112 + x2 = 4.166666667 + 11.11111112

Reorder the terms:
11.11111112 + -6.666666667x + x2 = 4.166666667 + 11.11111112

Combine like terms: 4.166666667 + 11.11111112 = 15.277777787
11.11111112 + -6.666666667x + x2 = 15.277777787

Factor a perfect square on the left side:
(x + -3.333333334)(x + -3.333333334) = 15.277777787

Calculate the square root of the right side: 3.908679801

Break this problem into two subproblems by setting 
(x + -3.333333334) equal to 3.908679801 and -3.908679801.

Subproblem 1

x + -3.333333334 = 3.908679801 Simplifying x + -3.333333334 = 3.908679801 Reorder the terms: -3.333333334 + x = 3.908679801 Solving -3.333333334 + x = 3.908679801 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '3.333333334' to each side of the equation. -3.333333334 + 3.333333334 + x = 3.908679801 + 3.333333334 Combine like terms: -3.333333334 + 3.333333334 = 0.000000000 0.000000000 + x = 3.908679801 + 3.333333334 x = 3.908679801 + 3.333333334 Combine like terms: 3.908679801 + 3.333333334 = 7.242013135 x = 7.242013135 Simplifying x = 7.242013135

Subproblem 2

x + -3.333333334 = -3.908679801 Simplifying x + -3.333333334 = -3.908679801 Reorder the terms: -3.333333334 + x = -3.908679801 Solving -3.333333334 + x = -3.908679801 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '3.333333334' to each side of the equation. -3.333333334 + 3.333333334 + x = -3.908679801 + 3.333333334 Combine like terms: -3.333333334 + 3.333333334 = 0.000000000 0.000000000 + x = -3.908679801 + 3.333333334 x = -3.908679801 + 3.333333334 Combine like terms: -3.908679801 + 3.333333334 = -0.575346467 x = -0.575346467 Simplifying x = -0.575346467

Solution

The solution to the problem is based on the solutions from the subproblems. x = {7.242013135, -0.575346467}

See similar equations:

| 2(3x+2)-1=2x-6 | | -3a+2=-a+6 | | 5x=42-x | | -5(3x-7)=21 | | 5x-7=5+4x | | 6+6x=6x+6 | | 7(e^9x+7)=9 | | 5x+6=-2(x-4) | | -7(5+13n)=14(1-6n) | | 7x-(5x-7)=21 | | 3+y^2=4 | | -2(3x+1)-2x=(2x)-4 | | 8(x+10)=2(6x-4) | | 18k-18k+k=16 | | 4+y^2=4 | | -7(x+10)+14x=3x+7(x+2) | | 160+50p=100 | | 4s^2+6s+2=0 | | -11(x+1)-12=-11x-62 | | P(1+rt)= | | 8=16-8n | | 1+y^2=4 | | 9(2a-11)=-3(a+12) | | 4(2m-5)=5-2(m+1) | | 5-2x=55 | | 8a-2.8=6a+4.2 | | 20=-3(22-m)+2(m-2) | | 2C^2+2C= | | 5x-6=-2(x+4) | | -9(m+3)=-6(m+8) | | 7=12+5x-x | | 45(2-x)-3(21x-1)=6(3x-1)+36 |

Equations solver categories